Diffraction Lobe

Turns out that most computer graphics conductor materials (metals) don’t fit well with their measured real life counterparts. Looks like microfacet models (any reflection node you ever used..) can’t fully address the appearance of this kind of materials. Microfaceting theory models the appearance of a material at macroscopic level based on surface micro details. Situation[…]

Hazy Reflections

Reflection hazying is actually an artifact. It happens due to micro imperfections which widen the actual reflection lobe making reflections appear less vivid and radiant, more milky and less contrasted. Hazing generally is due to poor industrial processes so that metals and other reflective surfaces have an inferior finish quality because of bad drying or[…]

Wave Optics Glints

This reflection node is a powerfull shader that supports both geometrical optics and wave optics glints, flakes, brushed patterns and scratches. Unlike in geometric optics, the contributions from different parts of the surface can sum non-linearly due to interference effects, to create the characteristic diffraction effects of wave optics.. ie. those colored patterns we see[…]

Multiple-scattering BRDF

With rombo Reflect shaders, – we’re introducing microfacet multiple-scattering. The microfaceting theory that is the fundation of the BRDF implementations out there is actually single-scattering. Microfacet models assume that the true physical surface is offset from a geometric surface in the form of a collection of microfacets called microsurface. Microfacet theory is a statistical model[…]

Power Metal

(THIS IS NOW DEPRECATED, we have added all the features here to our reflection nodes). We are designing a new Rombo.PowerMetal material. At the moment it supports STD generalized distribution for microfaceting reflections, microfacet normal mapping, multi-bounce microfaceting for correct energy conservation and rombo adaptive sampling for hard to sample highlights. STD distribution allow for[…]